

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

Blue Growth – IoT Smart Maritime Initiative – 5G+IoMT

Our Profile

- SCAN is part of Dept. of Informatics & Telecommunications (DIT), National & Kapodistrian University of Athens
- We form a research unit in DIT: Software Centric & Autonomic Networking Lab
- Capacity: 25 researchers, engineers and support personnel
 - 17 R&D EU Funded Projects; 4 coordinated by SCAN
 - 10 Industry Contracts
 - More than 500 publications
 - More than 4000 citations
 - Support of BSc/MSc/PhD dissertation thesis: ~15 per year

Our Focus

- Mobile/Wireless Communications (5G, LTE, etc.)
 - M2M and D2D communications
 - Context-based Resource & Mobility Management
 - Big Data Analytics for User Profiling
- Software-Defined Networks (SDN) Network Function Virtualization (NFV)
- Wireless SDN and Software-Defined Radio (SDR) using programmable radio hardware for flexible radio resources configuration
- Internet of Things and Future Internet applications and services
 - FI-WARE, Smart Cities/Farming/Tourism, Internet of Maritime Things
- Cloud computing (OpenStack, Ganeti, etc.) & Big Data Analytics

Our Involvement – EU Projects

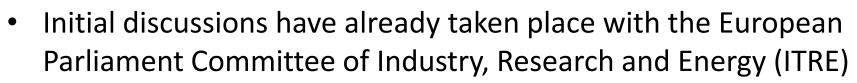
UNIVERSITY OF ATHENS

Areas of experience - EU Projects

- 5G, resource management, (cognitive) spectrum sharing etc.(METIS, Fed4Fire+, E2R I,II, SACRA, etc.)
- Cognitive network management (exploiting Machine Learning and/or Big Data Analytics) (METIS, Univerself, SELFNET, Specifi)
- SDN and NFV (Univerself trial, LiveCity trial, METIS, Fed4Fire+)
- MTC (METIS, SAF, FIspace)
- IoT, monitoring and data fusion, data aggregation, sensor connectivity to the Internet and the cloud (SAF, FIspace, FRACTALS)
- Development support and testing of FI-WARE IoT Generic Enablers (SAF, FIspace)
- FI application services development, deployment and externalization (LiveCity, SPECIFI, FIspace, etc.)
- Energy-efficient and spectrum efficient networking (SACRA, CONSERN)

Smart Maritime Initiative - Intro

- Following similar deployment framework as the "Smart City" projects, the deployment of the Smart Maritime initiative is announced. Main targets:
 - Provide an integrated test bed for the maritime domain, covering novel communications solutions (e.g., 5G), IoMT and data management,
 - Provide an open base platform for smart ports-smart vessels
 - Provide a test platform for Internet of Maritime things and respective communication solutions
 - Enable the fund raising for the sustainability of the platform


Smart Maritime Testbed Platform

- IoMT
- 5G etc., new networking concepts
- Maritime/ environmental and other apps
- Interworking with smart city and other projects

Smart Maritime initiative

- SMI's initial core consortium:
 - Angelicoussis Shipping Group "ASGL" (Maran Gas, etc.)
 - Dept. of Informatics and Telecommunications, University of Athens

GEOS

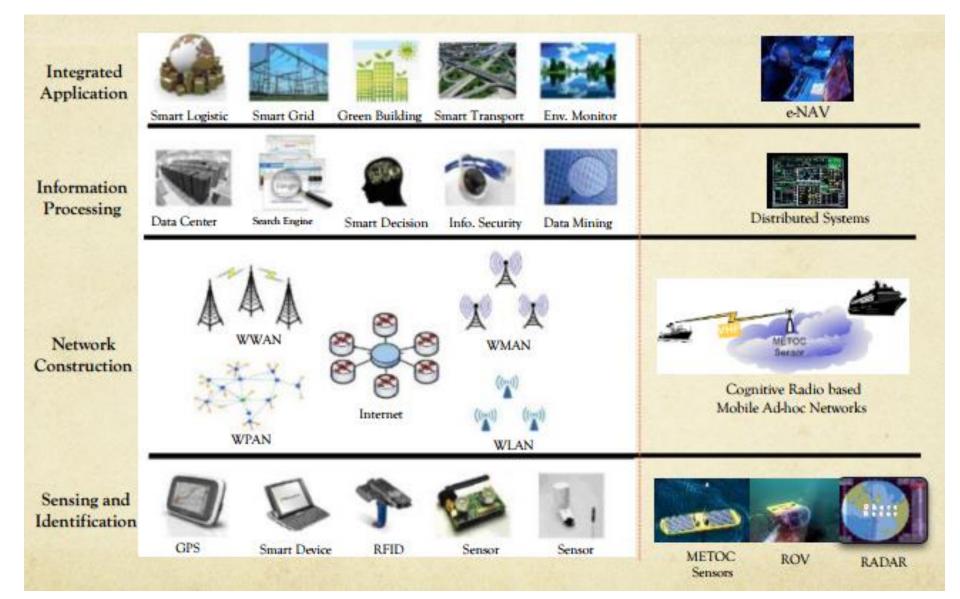
- Lloyd's Register South Europe
- Geosystems
- Enthalpy
- Collaborators / Sites:
 - Ports: Thessaloniki, Patras, Pireus
 - Operators: COSMOTE/OTE

Port of Thessaloniki

Port of Thessaloniki – infrastructure deployment for potential measurements/applications

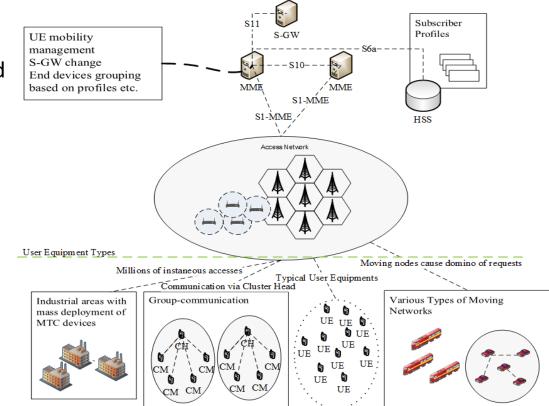
One of the biggest Maritime companies in the world

	Angelicoussis Sh	ipping Group	Ltd –	The fleet
	DRY CARGO	Operating	NO 29	DWT 5,063,000
-1-	avg. age 8.5 yrs	On Order	19	3,110,000
-		Total	48 NO	8,173,000 DWT
MiM	TANKERS	Operating	36	7,633,000
	avg. age 6.9 yrs	On Order Bareboat out	7 7	2,235,000 2,207,000
\frown		Total	50	12,075,000
MTG	LNG / LPG	Operating	NO 7	DWT 498,070
	avg. age 3.4 yrs (897,000 cubic m.)	On Order	0	0
	(0) 1,000 eucle int.)	Total	7	498,070

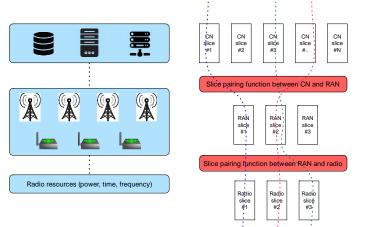

SMI: 5G- new networking concepts

- 5G :
 - Delay intolerant apps (e.g., smart port/smart city assisted driving for transportation of cargo and people)
 - High volume communications (e.g., cruise tourism apps)
 - High number of connected devices
- SDN:
 - Smart routing(smart integration of edge sensors and mobile devices)
- NFV:
 - Virtualised network functions

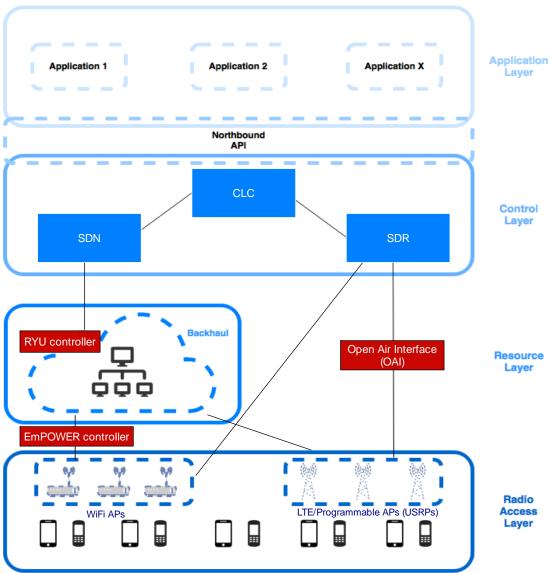
SMI: IoMT


- Smart navigation and routing
 - Energy efficiency
 - Emissions
 - Collision avoidance
 - Unidentified vessel notification
 - Weather conditions
- Smart maintenance
- Smart Vessel management and performance
- Smart transportation
 - Smart logistics
 - Cargo status monitoring and tracing
 - Smart Port/Smart City road networks and transportation networks
- Smart business model
 - Data analytics for smart business development
 - New business models

Networking and IoT technologies

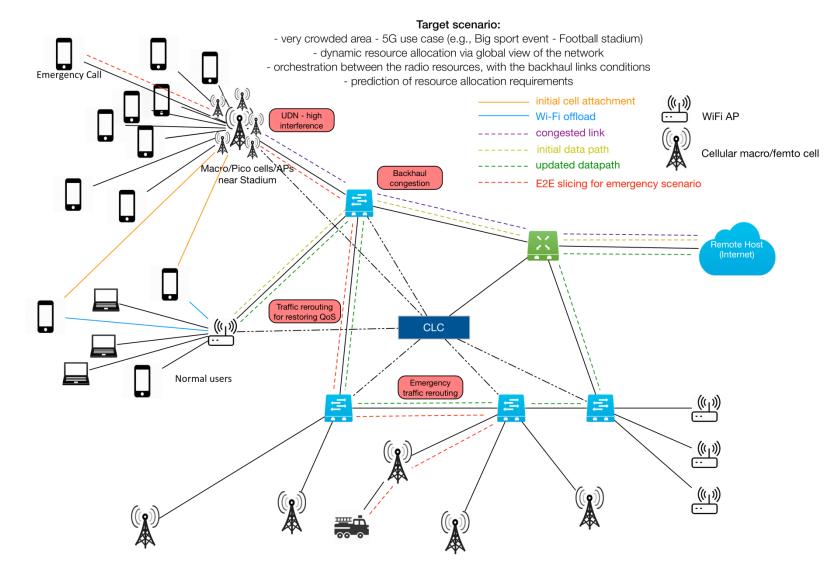

Mobile/Wireless Communications

- 5G
 - Delay intolerant,
 - Large numbers of connected devices etc.
- SDN-enabled 5G system
 - Infrastructure sharing,
 - SDN/NFV,
 - OpenStack, etc.
- Support of Heterogeneous 5G Networks
 - Ultra Dense Networks,
 - Operation in unlicensed bands, etc.
- Large-Scale Test bed
 - Realistic experimentation



Example Deployment: Cross Layer Control (CLC) based on SDN and SDR towards 5G Heterogeneous Networks

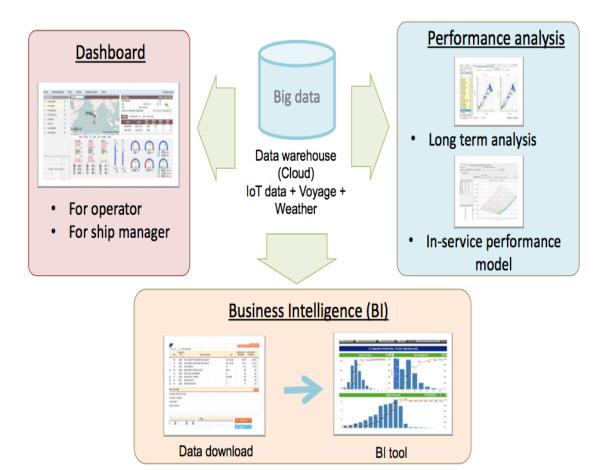
- Spectrum and network resources scarcity imposes a coordinated resource sharing scheme
- Besides resource scarcity, ultra dense wireless deployments result in critical interference challenges
- By acquiring a global view of the network, via a cross layer controller, we attempt to orchestrate the resource allocation mechanisms in an end-to-end manner, i.e., in the Core Network, the backhaul of the RAN, as well as the Radio environment



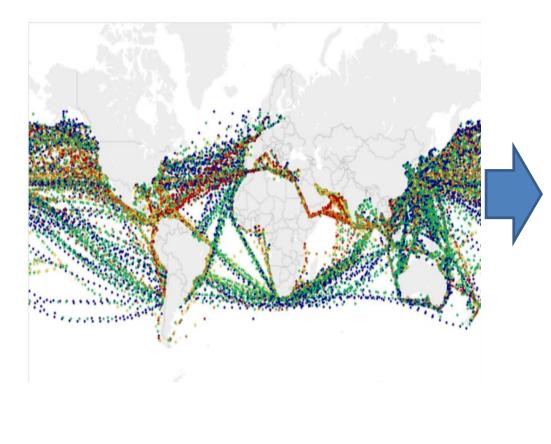
Cross Layer Control (CLC) based on SDN and SDR towards 5G Heterogeneous Networks

- CLC operates in a controlleragnostic manner on top of various SDN and SDR controllers (Ryu, OpenDaylight, EmPOWER, OAI)
- CLC uses an abstraction layer, which aggregates:
 - the network and radio conditions (which are forwarded to CLC)
 - the network policies (which are being pushed from CLC to the network) are aggregated

Cross Layer Control (CLC) based on SDN and SDR towards 5G Heterogeneous Networks


IoMT and Big Data application areas

Role	Function	Example of Big data application	
Chin anaratar	Operation	 Energy saving operation Safe operation Schedule management 	
Ship operator	Fleet planning	Fleet allocationService planningChartering	
Ship owner	Technical management	 Safety operation Condition monitoring & maintenance Environmental regulation compliance Hull & propeller cleaning Retrofit & modification 	
	New building	Design optimization	


Other partners in value chains, such as cargo owners,

shipyards, equipment manufacturers, class societies and others, have also interests in ship Big data.

Big data management in IoMT

Smart networking and Big Data

Smart Networking for diverse needs in the maritime domain.

- Infrastructure slicing,
- Short range and long range connectivity for vessels, cargo, transportation
 Big Data analytics towards:
- Creation of different operational profiles (characterized by consumption efficiency, cargo type, route length, ship speed, weather conditions, etc.)
- Short/long term performance analysis
- Performance visualization

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

Contact point

Prof. Nancy Alonistioti nancy@di.uoa.gr